Saturday, August 7, 2010

How does PDP works?

How does PDP works?

3.1 What is plasma?

Figure 3.1 Plasma Generation

The central element in a fluorescent light is a plasma, a gas made up of free-flowing ions (electrically charged atoms) and electrons (negatively charged particles). Under normal conditions, a gas is mainly made up of uncharged particles. That is, the individual gas atoms include equal numbers of protons (positively charged particles in the atom's nucleus) and electrons. The negatively charged electrons perfectly balance the positively charged protons, so the atom has a net charge of zero.

If you introduce many free electrons into the gas by establishing an electrical voltage across it, the situation changes very quickly. The free electrons collide with the atoms, knocking loose other electrons. With a missing electron, an atom loses its balance. It has a net positive charge, making it an ion. In a plasma with an electrical current running through it, negatively charged particles are rushing toward the positively charged area of the plasma, and positively charged particles are rushing toward the negatively charged area.

In this mad rush, particles are constantly bumping into each other. These collisions excite the gas atoms in the plasma, causing them to release photons of energy. (For details on this process, see How Fluorescent Lamps Work.) Xenon and neon atoms, the atoms used in plasma screens, release light photons when they are excited. Mostly, these atoms release ultraviolet light photons, which are invisible to the human eye. But ultraviolet photons can be used to excite visible light photons, as we'll see in the next section.

The xenon, neon, and helium gas in a plasma television is contained in hundreds of thousands of tiny cells positioned between two plates of glass. Long electrodes are also put together between the glass plates, in front of and behind the cells. The address electrodes sit behind the cells, along the rear glass plate. The transparent display electrodes, which are surrounded by an insulating dielectric material and covered by a magnesium oxide protective layer, are mounted in front of the cell, along the front glass plate. Control circuitry charges the electrodes that cross paths at a cell, creating a voltage difference between front and back and causing the gas to ionize and form plasma. As the gas ions rush to the electrodes and collide, photons are emitted.

In a monochrome plasma panel, the ionizing state can be maintained by applying a low-level voltage between all the horizontal and vertical electrodes–even after the ionizing voltage is removed. To erase a cell all voltage is removed from a pair of electrodes. This type of panel has inherent memory and does not use phosphors. A small amount of nitrogen is added to the neon to increase hysteresis. In color panels, the back of each cell is coated with a phosphor. The ultraviolet photons emitted by the plasma excite these phosphors to give off colored light. The operation of each cell is thus comparable to that of a fluorescent lamp.

Every pixel is made up of three separate subpixel cells, each with different colored phosphors. One subpixel has a red light phosphor, one subpixel has a green light phosphor and one subpixel has a blue light phosphor. These colors blend together to create the overall color of the pixel, the same as a triad of a shadow mask CRT or color LCD. Plasma panels use pulse-width modulation to control brightness: by varying the pulses of current flowing through the different cells thousands of times per second, the control system can increase or decrease the intensity of each subpixel color to create billions of different combinations of red, green and blue. In this way, the control system can produce most of the visible colors. Plasma displays use the same phosphors as CRTs, which accounts for the extremely accurate color reproduction when viewing television or computer video images (which use an RGB color system designed for CRT display technology).

With phosphor-based electronic displays (including cathode ray and plasma displays), the prolonged display of a menu bar or other static (fixed in place and unchanging) graphical elements over time can create a permanent ghost-like image of these objects since phosphor compounds which emit the light lose their luminosity with use. As a result, when certain areas of the display are used more frequently than others, over time the lower luminosity areas become visible to the naked eye and the result is called burn-in. While a ghost image is the most noticeable effect, a more common result is that the image quality will continuously and gradually decline as luminosity variations develop over time, resulting in a "muddy" looking picture image. Most plasma display producers state a 100,000 hours time before brightness halves, theoretically allowing for over ten years of normal viewing before the display dims significantly.

Plasma displays also exhibit another image retention issue which is sometimes confused with screen burn-in damage. In this mode, when a group of pixels are run at high brightness (when displaying white, for example) for an extended period of time, a charge build-up in the pixel structure occurs and a ghost image can be seen. However, unlike burn-in, this charge build-up is transient and self corrects after the image condition that caused the effect has been removed and a long enough period of time has passed (with the display either off or on).

3.2 Inside a Plasma Display

The xenon and neon gas in a plasma television is contained in hundreds of thousands of tiny cells positioned between two plates of glass. Long electrodes are also sandwiched between the glass plates, on both sides of the cells. The address electrodes sit behind the cells, along the rear glass plate. The transparent display electrodes, which are surrounded by an insulating dielectric material and covered by a magnesium oxide protective layer, are mounted above the cell, along the front glass plate.
Both sets of electrodes extend across the entire screen. The display electrodes are arranged in horizontal rows along the screen and the address electrodes are arranged in vertical columns. As you can see in the diagram below, the vertical and horizontal electrodes form a basic grid.



Figure 3.2 inside Plasma

To ionize the gas in a particular cell, the plasma display's computer charges the electrodes that intersect at that cell. It does this thousands of times in a small fraction of a second, charging each cell in turn.

Figure 3.3 Imaging Process

When the intersecting electrodes are charged (with a voltage difference between them), an electric current flows through the gas in the cell. As we saw in the last section, the current creates a rapid flow of charged particles, which stimulates the gas atoms to release ultraviolet photons.

The released ultraviolet photons interact with phosphor material coated on the inside wall of the cell. Phosphors are substances that give off light when they are exposed to other light. When an ultraviolet photon hits a phosphor atom in the cell, one of the phosphor's electrons jumps to a higher energy level and the atom heats up. When the electron falls back to its normal level, it releases energy in the form of a visible light photon.

The phosphors in a plasma display give off colored light when they are excited. Every pixel is made up of three separate sub pixel cells, each with different colored phosphors. One sub pixel has a red light phosphor, one sub pixel has a green light phosphor and one sub pixel has a blue light phosphor. These colors blend together to create the overall color of the pixel.

By varying the pulses of current flowing through the different cells, the control system can increase or decrease the intensity of each sub pixel color to create hundreds of different combinations of red, green and blue. In this way, the control system can produce colors across the entire spectrum.

The main advantage of plasma display technology is that you can produce a very wide screen using extremely thin materials. And because each pixel is lit individually, the image is very bright and looks good from almost every angle. The image quality isn't quite up to the standards of the best cathode ray tube sets, but it certainly meets most people's expectations.

The biggest drawback of this technology has been the price. However, falling prices and advances in technology mean that the plasma display may soon edge out the old CRT sets.
To learn more about plasma displays, as well as other television technologies, check out the links on the next page.

No comments:

Post a Comment